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A theoretical framework is developed to predict the rate of geometric collision and
the collision velocity of small size inertialess particles in general turbulent flows. The
present approach evaluates the collision rate for small size, inertialess particles in
a given instantaneous flow field based on the local eigenvalues of the rate-of-strain
tensor. An ensemble average is then applied to the instantaneous collision rate to
obtain the average collision rate. The collision rates predicted by Smoluchowski
(1917) for laminar shear flow and by Saffman & Turner (1956) for isotropic tur-
bulence are recovered. The collision velocities presently predicted in both laminar
shear flow and isotropic turbulence agree well with the results from numerical sim-
ulations for particle collision in both flows. The present theory for evaluating the
collision rate and the collision velocity is also applied to a rapidly sheared homo-
geneous turbulence to assess the effect of strong anisotropy on the collision rate.
Using (ε/ν)1/2, in which ε is the average turbulence energy dissipation rate and ν
is the fluid kinematic viscosity, as the characteristic turbulence shear rate to nor-
malize the collision rate, the effect of the turbulence structure on the collision rate
and collision velocity can be reliably described. The combined effects of the mean
flow shear and the turbulence shear on the collision rate and collision velocity are
elucidated.

1. Introduction

The rate of flow-induced particle collisions affects directly the particle size distribu-
tion in a particle production system. Examples of turbulence-induced particle collision
can be seen in the formation of rain drops in clouds, pulverized coal combustion,
agglomeration of fine powders in gas flows, air filtration equipment, sewage disposal
devices, fast fluidized beds, dust and spray burners, and so on. Population balance
equations are often used for predicting the evolution of particle size distribution in
particle production systems or in studying particle coagulation. They are typically
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Figure 1. Local coordinates for collision in laminar shear flow.

given in the form of

dn1

dt
= −α11n1n1 − α12n1n2 − α13n1n3 − · · ·

dn2

dt
= 1

2
α11n1n1 − α12n1n2 − α22n2n2 − α23n2n3 − · · ·

dn3

dt
= α12n1n2 − α13n1n3 − α23n2n3 − α33n3n3 − · · ·

dn4

dt
= α13n1n3 + 1

2
α22n2n2 − α14n1n4 − α24n2n4 − · · ·

...


(1)

In the above, ni is the number concentration of the ith particle size group. For primary
particles, i = 1, with a volume v1, the particle in the ith group has a volume of iv1. The
quantity αijninj , denoted as Ṅij in this paper, is called the collision rate. It represents
the number of collisions among the ith particle size group with the jth particle size
group per unit volume and per unit time. The coefficient αij is called the collision
kernel or collision function and must be evaluated separately. The determination of
αij in a general turbulent flow for small particles with very small inertia is the primary
focus of this paper. In reality, particle collision and the particle size-evolution are not
only controlled by the fluid flow and particle inertia but also affected by the local
particle–fluid and particle–particle interactions. A turbulent shear may bring two
particles to collide; such an event is called a geometric collision. Whether these two
particles stick to form a new particle or repel from each other depends on the local
fluid–particle and the particle–particle interaction forces. When these two particles
stick, a coagulation event has occurred. The probability for the colliding particles
to coagulate can be taken into account in equation (1) by multiplying the collision
function with a factor called collision efficiency. To determine the rate of geometric
collision, it is a reasonable first step to neglect the particle–fluid and particle–particle
interactions. It must also be pointed out that when equation (1) is used to predict
the particle size evolution, it is necessary for particles in the system to be genuinely
mixed.

Smoluchowski (1917) considered the collision rate among spherical particles in a
laminar shear flow, (ux, uy, uz) = (Γy, 0, 0) with a constant gradient ∂ux/∂y = Γ . For
a target particle of radius ri centred at an arbitrary position xi, any particle with a
radius rj moving toward the target particle will cause a geometric collision if

|xi − xj | 6 Rij = ri + rj
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Figure 2. Sketch of particle collision velocity. The separation distance is
x2 − x1 = ±Rij = ±(ri + rj).

is satisfied. The rate of the geometric collision can be evaluated as

Ṅij = ninj

∫
wr<0

−wrdA, (2)

where wr is the radial component of the relative fluid velocity between xi and xj , wr < 0
indicates an impending collision, −n1n2wr is the particle flux moving inward to the
target particle, and A is the spherical surface with radius Rij = ri + rj . Using standard
spherical coordinates (R, θ, φ) centred at the target particle (see figure 1), wr on the
spherical surface of radius Rij can be written as wr = Γy cos θ = Rij sin θ cos θ cosφ.
With dA = R2

ij sin θ dθ dφ, it is easily seen that

Ṅij = ninj
4
3
ΓR3

ij (3)

or

αij = 4
3
ΓR3

ij . (4)

Saffman & Turner (1956, hereinafter referred as ST) presented a classical theory
for the rate of geometric collision among small particles in a Gaussian, isotropic
turbulence. The collision rate among particle size group i and group j is

Ṅij = ninj

〈∫
wr<0

−wrdA
〉
. (5)

The ensemble average, denoted by 〈 〉, is necessary since −wr due to turbulence is
random. Because of the continuity of the fluid flow, the volume influx entering the
spherical surface of radius Rij is equal to the efflux which results in

Ṅij = 1
2
ninj

〈∫
entire sphere

|wr|dA
〉
. (6)

ST further interchanged the integration with the ensemble average so that Ṅij can be
evaluated in an isotropic turbulence,

Ṅij ≈ 1
2
ninj

∫
entire sphere

〈|wr|〉 dA. (7)

For an isotropic turbulence, the above becomes

Ṅij = ninj2πR
2
ij 〈|wx|〉 , (8)

where x is the local coordinate parallel to the line connecting the centres of the
colliding particles, as shown in figure 2. For particle size smaller than the Kolmogorov
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lengthscale η, the relative velocity upon the collision was evaluated using the standard
results of small-scale turbulence theory,

〈|wx|〉 = 〈|uix − ujx|〉 ≈ Rij
〈∣∣∣∣∂u∂x

∣∣∣∣〉 = Rij

(
2

15π

ε

ν

)1/2

(9)

where ε is the energy dissipation rate of the turbulence and ν is fluid kinematic
viscosity. This gives

Ṅij = ninjR
3
ij

(
8

15π

ε

ν

)1/2

= 1.2944ninj R
3
ij

(
ε

ν

)1/2

, (10)

or

αij = 1.2944R3
ij

(
ε

ν

)1/2

, (11)

or

α∗ij =
αij

R3
ij(ε/ν)

1/2
= 1.2944, (12)

where α∗ij is the normalized collision coefficient or collision kernel.
Balachandar (1988) performed numerical simulations to examine the validity of

the ST theory. He found a significant effect of the preferential concentration on
the increase of the collision rate as the particle inertia increases. However, the ST
theory in the zero-inertia, small-size limit cannot be validated for two reasons. (i) The
probability distribution of ∂u/∂x was found to be log-normal, instead of Gaussian
as assumed in ST’s theory, in the direct numerical simulation (DNS) of turbulence.
This results in a correction to ST’s prediction for the collision rate. (ii) Particle size
much larger than the Kolmogorov lengthscale η was used in his simulation while
ST’s theory is for particles with size ri � η. Chen, Kontomaris & Mclaughlin (1995)
studied the particle collision and deposition in a two-dimensional turbulent channel
flow using the turbulence field generated by DNS. They found a significant non-
uniformity in the concentration distribution because the particulate flow is inherently
inhomogeneous. Recently, Wang, Wexler & Zhou (1998) examined ST’s theory by
using DNS results for the turbulence to evaluate the particle collision rate in an
isotropic turbulence. Their results indicate that the collision rate depends on the
implementation of the post-collision treatment. For a certain implementation, the
collision rate can be smaller than that given by ST by as much as 15% for particles
with finite size but zero inertia.

It must be pointed out that from equation (6) to equation (7), the interchange
between the integration with the ensemble average is only an approximation even
in a Gaussian, isotropic turbulence. Furthermore, the interchange between these two
operations severely limits the extension of ST’s result and approach to other turbulent
flows such as the near-wall region where the mean flow gradient contributes to 〈|wr|〉.
Of course, in the theory of Smoluchowski for laminar shear flow, this issue does
not arise since the ensemble average over velocity is not needed so that there is no
difference between equations (6) and (7). However, in the numerical simulation to
determine the particle collision rate in a laminar shear flow, the ensemble average
over the initial particle positions can be used to improve the statistics. In a typical
industrial facility where particle collision leads to the desirable growth of particles,
the inhomogeneity of the turbulent flow structure is common. Owing to the effects
such as turbulence inhomogeneity, particles tend to be driven toward the near-wall
region to cause a further inhomogeneity in the particle concentration distribution. It
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was not clear how the collision rate of small particles in the presence of both strong
mean flow shear and high turbulence intensity could be predicted (K. Kontamaris
1995, private communication).

In this paper, a theoretical framework is presented for evaluating the rate of
the geometric collision of inertialess particles, whose sizes are smaller than the
Kolmogorov lengthscale, in general turbulent flows. The present analysis starts from
equation (5). Using the leading-order term, (xi−xj) ·∇u, in the Taylor series expansion
to approximate the relative fluid velocity, w, at the collision instant, the collision rate
for an arbitrarily given ∇u is evaluated first. The ensemble average is subsequently
performed to obtain the local particle collision rate for a given flow. This theory is
applied to a Gaussian, isotropic turbulence to obtain the collision rate and collision
velocity in an isotropic turbulence. Numerical simulations based on Lagrangian
particle tracking are also performed to obtain the collision rate and collision velocity
directly in the Gaussian, isotropic turbulence. Good agreement is obtained between the
present prediction and the numerical simulation for the collision kernel α∗ij . Excellent
agreement is obtained for the average collision velocity between the prediction and the
simulation. While the present result for the collision rate agrees with the prediction of
ST, the present theory predicts an average collision velocity at the instant of collision,
〈−wr|wr<0〉, that is 1.58 times the value given by ST. The difference is caused by
the bias of the collision toward regions of higher collision velocity which was not
considered in previous studies on flow-induced particle collisions. Since whether the
colliding particles coagulate or not depends, to a large extent, on the magnitude
of the relative velocity of the colliding particles (to overcome the attractive surface
forces), it is important that 〈−wr|wr<0〉 and

〈
w2
r |wr<0

〉
be predicted correctly. Using

the rapid distortion theory (RDT) for a rapidly sheared homogeneous turbulence and
the random Fourier modes representation of turbulence, the dependence of particle
collision kernel αij on the mean flow shear rate and the turbulence structure in the
homogeneous turbulent shear flow is studied under the present theoretical framework.
The effect of the turbulence structure on the collision rate and collision velocity can
be captured by using a characteristic turbulent shear rate (ε/ν)1/2 in which ε is the
energy dissipation rate of turbulence under rapid shear. The collision kernel, after
normalization by particle volume and (ε/ν)1/2, mainly depends on the ratio of the
mean flow shear rate to (ε/ν)1/2.

2. Analysis
The relative fluid velocity between the target particle centred at x1 and the colliding

particle centred at x2 is w = u1 − u2 and the relative position between x1 and x2 is

r12 = x2 − x1. (13)

For R = |r12| < η, the relative velocity w can be expressed using the Taylor series
expansion as

w = u2 − u1 ≈ r12·∇u+ · · · for |r12| < η, (14)

to the leading order. The collision rate for a given ∇u at the spatial location x = x1

at a given instant is

Ṅ12(t, x) = n1n2

∫
wr<0

−w · ndA, (15)
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where n is the outward normal of the surface given by |x2 − x1| = R and wr = w · n.
On the spherical surface |r12| = R, it is obvious that n = r12/R. Hence,∫

wr<0

−w · ndA =
1

R

∫
wr<0

−w · r12dA ≈ 1

R

∫
wr<0

−r12 · ∇u · r12dA. (16)

Representing ∇u as the sum of a symmetrical part (rate-of-strain tensor) and an
anti-symmetrical part (vorticity tensor), it can be easily seen that the anti-symmetrical
part of ∇u does not contribute to wr . Physically, it is simply because a rigid-body
rotation does not contribute to the normal velocity. For a symmetric tensor E =
1
2
(∇u+ (∇u)T ), or a symmetric matrix Eij , a linear transformation, which is a rotation

of the coordinate system from (x, y, z) to (x̂, ŷ, ẑ), can be easily found to reduce Eij
to a diagonal form as

Ê =

 ex̂ 0 0
0 eŷ 0
0 0 eẑ

 , (17)

where (ex̂, eŷ, eẑ) are the eigenvalues of E and they are the principal values of the
rate-of-strain tensor. Because of the incompressibility, ex̂+eŷ+eẑ = 0 so that there are

only two independent parameters (say ex̂ and eŷ) in Ê . For the purpose of evaluating
the integral in equation (16), the eigenvalues (ex̂, eŷ, eẑ) may be arranged in ascending
order as

eẑ = −(ex̂ + eŷ) 6 eŷ 6 ex̂. (18)

Defining

ζ =
eŷ

ex̂
with − 0.5 6 ζ 6 1, (19)

the integrand in equation (16) can be expressed as

−r12 · ∇u · r12 = −(ex̂ x̂
2 + eŷ ŷ

2 + eẑ ẑ
2) = −ex̂[x̂2 + ζŷ2 − (1 + ζ)ẑ2]

= −ex̂R2[cos2 θ + ζ sin2 θ cos2 φ− (1 + ζ) sin2 θ sin2 φ], (20)

where a local spherical coordinate system (x̂ = R cos θ, ŷ = R sin θ cosφ, ẑ = R sin θ
sinφ) has been employed. Hence,∫

wr<0

−w · n dA

= −R3ex̂

∫ 2π

0

∫ π

0 wr<0

[cos2 θ + ζ sin2 θ cos2 φ− (1 + ζ) sin2 θ sin2 φ] sin θ dθ dφ

= R3ex̂H(ζ). (21)

Again, wr < 0 in the integration limit implies that only the non-positive values inside
the square brackets are evaluated in the integration. Whereas an analytical expression
for H(ζ) is difficult to obtain owing to the dependence of the integration limits on
arbitrary ζ, accurate numerical integration for H(ζ) can be carried out in a straight-
forward manner (using Simpson’s rule in this work). The following interpolation is
then constructed for H(ζ) based on the results of numerical integration,

H(ζ) ≈ 8
3
[0.90725 + 0.2875(0.5 + ζ)2 + 0.33333(0.5 + ζ)4] (ζ < 0)

≈ 8
3
[1 + 0.55ζ + 0.72407ζ2 − 0.96874ζ3 + 0.73924ζ4 − 0.23035ζ5] (ζ > 0). (22)
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The above piecewise polynomial fitting differs from the results of numerical integration
by less than 0.1%. Consider the laminar shear flow, for example. In this case,
ζ = 0, ex̂ = 1

2
Γ ,H(0) = 8

3
, so that Ṅ12 = n1n2

1
2
ΓR3 8

3
= n1n2

4
3
ΓR3 which is the same

as given by Smoluchowski (1917).
Equation (22) is valid for −1 6 ζ 6 −0.5 as well, since it is based on (21). The

restriction for ζ > −0.5 given by (19) results only from (18) when the eigenvalues
are arranged in such a manner. For −1 6 ζ 6 −0.5, H(ζ) is symmetric with respect
to ζ = −0.5 and this fact has been used in constructing the curve fitting given by
(22) for ζ < 0. For example, ζ = 0 corresponds to a two-dimensional stagnation flow
in the (x̂, ẑ)-plane, and ζ = −1 corresponds to a two-dimensional stagnation flow
in the (x̂, ŷ)-plane, so that the collision rates for ζ = 0 and ζ = −1 are completely
equivalent. It is also interesting to note that ζ = −0.5 is equivalent to ζ = 1 since
both correspond to an axisymmetric stagnation flow. For ζ = −0.5, the local flow
experiences an axisymmetric contraction with the x̂-axis being the axis of symmetry.
For ζ = 1, the local flow is an axisymmetric expansion with the ẑ-axis being the axis
of the symmetry and flow decelerates along the ẑ-direction. The only difference is the
scale factor ex̂. The direction of the flow or the sign of ex̂ does not affect the collision
rate since the integration only picks up the contribution from the part of the colliding
surface where wr = w · n < 0. For ζ > 0, it is seen that,

(ex̂, eŷ, eẑ) = ex̂(1, ζ,−(1 + ζ)) = eẑ

(
− 1

1 + ζ
,− ζ

1 + ζ
, 1

)
,

where |eẑ| = |ex̂|(1 + ζ). Hence,

H(0 6 ζ 6 1) = (1 + ζ)H

(
− 1

1 + ζ

)
.

Similarly,

H

(
− 1

1 + ζ

)
= H

(
− ζ

1 + ζ

)
since H(ζ) is symmetric with respect to ζ = −0.5 for ζ 6 0. Thus, H(ζ 6 0) can be
obtained from H(ζ > 0) as

H

(
− 1

1 + ζ

)
= H

(
1

1 + ζ
− 1

)
=

1

1 + ζ
H(ζ) for ζ > 0. (23)

Finally, the collision rate for small size, inertialess particles in a turbulent flow is
simply obtained by taking the ensemble average over all possible values of the
rate-of-strain tensor as

Ṅ12(x, t) = n1n2R
3 〈ex̂H(ζ)〉 . (24)

It is emphasized that this result is applicable to general turbulent flows since ni, ex̂, and
ζ are all functions of x and t. Needless to say, the isotropy assumption is eliminated
in this framework. When the detailed knowledge of ∇u is available, such as from
DNS or random Fourier modes representation (Kraichnan 1970) of turbulence, the
ensemble average in (24) can be carried out. The local, ensemble-averaged collision
rate is thus obtained.

The foregoing analysis can also be extended to evaluate the average of the normal
(or radial) component of the collision velocity 〈−wr|wr<0〉. It is noted that the average
collision velocity is always a conditional average under the condition wr < 0. Here-
inafter, the notation wr < 0 is dropped for simplicity with the understanding that
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〈−wr〉 = 〈−wr|wr<0〉, and
〈
w2
r

〉
=
〈
w2
r |wr<0

〉
. At a given location x with arbitrary ex̂

and ζ at any given instant, the instantaneous average of the normal collision velocity
can be calculated by integrating over the spherical surface of radius R as

〈wr|ex̂, ζ〉A =

∫
wr<0

wr(−wr)dA∫
wr<0

(−wr)dA . (25)

In the above, the superscript A on the left-hand side denotes the area-average on the
colliding surface of radius R = r1 + r2, (−wr)dA in the numerator can be interpreted
as proportional to the probability of a particle striking the colliding surface at a
position (θ, φ) over an area dA and wr in the numerator is the relative radial velocity
of the collision at (θ, φ) on the colliding surface. The denominator is the normalizing

factor for the probability. The product, wr(−wr), clearly indicates that 〈wr|ex̂, ζ〉A is
a biased average in favour of those regions on the colliding surface where (−wr) is
high. Suppose that NR realizations of turbulence be taken in a turbulent flow. Based
on (5), the total number of collision per unit time will be

Nc = NRn1n2

〈∫
wr<0

(−wr)dA
〉
.

The chance of a particle striking the target surface over an area dA at (θ, φ) relative to
the axis of the principal direction x̂ in a given realization is then n1n2(−wr)dA|wr<0Nc.
Integrating over the target surface of radius R and summing over NR realizations, the
ensemble averaged 〈wr〉 is obtained,

〈wr〉 = NR

〈∫
wr<0

wr
n1n2(−wr)

Nc

dA

〉
=

〈∫
wr<0

wr(−wr)dA
〉

〈∫
wr<0

(−wr)dA
〉 . (26)

The above can be simplified to

〈wr〉 = −R 〈e2
x̂G(ζ)

〉
/ 〈ex̂H(ζ)〉 , (27)

where

G(ζ) =

∫ 2π

0

∫ π

0 wr<0

[cos2 θ + ζ sin2 θ cos2 φ− (1 + ζ) sin2 θ sin2 φ]2 sin θ dθ dφ. (28)

The integration can again be evaluated numerically and represented in the following
piecewise polynomials

G(ζ)/H(ζ) = 0.4 + 1.0777(0.5 + ζ)2 − 0.64767(0.5 + ζ)4 for ζ < 0

= 0.62831 + 0.68495ζ − 0.091083ζ2

+0.090301ζ3 − 0.034658ζ4 for ζ > 0. (29)

Similarly, the mean square value of the radial component of the collision velocity〈
w2
r

〉
can be evaluated as 〈

w2
r

〉
= R2

〈
e3
x̂K(ζ)

〉
/ 〈ex̂H(ζ)〉 , (30)

with

K(ζ)/H(ζ) = 0.17114 + 1.2643(0.5 + ζ)2 − 0.48123(0.5 + ζ)4 for ζ < 0

= 0.45714 + 0.97655ζ + 0.39606ζ2

+ 0.072430ζ3 − 0.0291ζ4 for ζ > 0. (31)
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Figure 3. Variations of H(ζ), G(ζ), K(ζ) with ζ where f1 = 3
8
H(ζ), f2 = G(ζ)/H(ζ) and

f3 = K(ζ)/H(ζ).

The functions H(ζ), G(ζ)/H(ζ), and K(ζ)/H(ζ) are shown in figure 3. Take a laminar
shear flow for example: ex̂ = 1

2
Γ and ζ = 0 so that G/H = 0.62832(= 1

5
π) and

K/H = 16
35

. It is easily seen that

〈wr〉 = −R 1
4
Γ 2 1

5
π 8

3
/[ 1

2
Γ 8

3
] = − 1

10
πΓR, (32)〈

w2
r

〉
= R2 1

8
Γ 3 16

35
8
3
/[ 1

2
Γ 8

3
] = 4

35
(ΓR)2. (33)

These results can be used to validate the present theoretical formulation by comparing
them with the numerical simulation results of particle collision based on Lagrangian
tracking.

To apply the above results to turbulent flows, we consider the following two
cases: (i) a Gaussian isotropic turbulence; and (ii) a rapidly sheared homogeneous
turbulence under a mean flow gradient ∂ux/∂y = Γ . In both cases, the turbulence can
be represented using random Fourier modes and ensemble averages can be obtained
without resorting to the direct numerical solutions to the Navier–Stokes equations
for the fluid flows. Pertinent comparison can be made with ST’s prediction in the
first case. Insights on the effects of mean flow shear can be gained by examining the
collision rate in the rapidly sheared turbulence.

The detailed representation of the isotropic turbulence and rapidly sheared homo-
geneous turbulence are given in the Appendix. In short, the isotropic turbulence is
expressed as in equation (A 6). For sheared homogeneous turbulence, the flow field is
given by equation (A 18).

3. Numerical simulation of particle collision in isotropic turbulence
3.1. Random Fourier modes representation of fluid turbulence in a periodic box

The velocity field of the Gaussian isotropic turbulence is first generated by a random
Fourier modes representation (A 6). To effectively conduct a computational study on
particle collision, a finite region should be used and periodic boundary conditions are
enforced to ensure the continuity in the velocity field. We choose a box of volume π3.
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To render the turbulence represented by random Fourier modes periodic in this box,
the random wavenumbers, k(m)

i , are rounded to the nearest even integers while all other
quantities are held fixed so that the flow is periodic within the box of volume π3. The
periodic box of volume π3 yields virtually the same collision statistics when the volume
is increased to (2π)3. Hence, π3 is used throughout this study for efficient numerical
simulation of particle collisions. The corresponding statistics, such as turbulence root-
mean-squared (r.m.s.) velocity u0, Reynolds number Reλ, Taylor micro lengthscale
λ, Kolmogorov lengthscale η, and Kolmogorov timescale τk , are computed based on
the modified wavenumbers. Using the present analysis outlined in § 2, the collision
statistics, when normalized using (ε/ν)1/2 for α11 and 〈−wr〉, remain the same whether
we use the turbulence generated for an unbounded domain or for a periodic box.

A number of particles (Np) are randomly introduced in the flow field of volume
π3. Their motions are advanced using ui(x, t) given by (A 6) with a timestep ∆t. Their
trajectories are computed with a second-order scheme.

3.2. Collision detection scheme

Collision detection between any particle pair (Balachandar 1988; Chen et al. 1995) is
briefly described as follows. At the nth timestep tn, two particles are located at x1(tn)
and x2(tn), respectively. At time tn+1 = tn + ∆t, they are advanced to x1(tn+1) and
x2(tn+1). The distance between two particles can be expressed as

d(t) = |x2(t)− x1(t)| for tn 6 t 6 tn+1. (34)

The pair collide during this period of time if d(t) 6 Rij .
In general, the collision detection requires searching the collision pairs among all

Np particles; this takes O(N2) operations. In this study, the collision detection method
described by Balachandar (1988) and Chen et al. (1995) is implemented. By dividing
the computational domain of volume π3 into a number of smaller cells, the potential
collision partners for a given particle in one cell are then searched within this cell
and its twenty-six neighbouring cells during one timestep. This search involves a
much smaller number of particles than in the entire domain. Only binary collision is
considered by assuming a negligible probability of multiple collisions within a small
timestep in the dilute condition. Any particle that moves out of the computational box
is reintroduced into the box by invoking the periodicity. The collision rate or coefficient
can be determined, in principle, by counting the number of collisions per timestep.

3.3. Post-collision treatment

A collision is counted when two particles are brought into contact. How the colliding
particles are treated after the collision may have a significant effect on future particle
collision. In the work by Chen et al. (1995) a ‘keep all’ scheme was used. Every collision
results in the colliding particles disappearing from their respective size groups and
a larger particle being generated. Both mass and momentum conservation laws were
applied for the birth of this new particle. Balachandar (1988) used a different post-
collision scheme. Starting with monosize particles in the system, the resulting larger
particle was discarded from the flow field after each collision so that it would not
contribute to future collisions. This post-collision treatment is hereinafter referred as
a ‘throw away’ scheme. Sundaram & Collins (1996) employed a hard sphere collision
model. Particles were forced to bounce back after each collision. Wang et al. (1998)
tested three different schemes; two of them allow the colliding particles to overlap
in space (hereinafter referred as an ‘overlapping’ scheme) but no larger particles are
formed after the collision. These two colliding particles can separate after their tra-
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Particle 〈−wr〉 〈−wr〉 〈
w2
r

〉 〈
w2
r

〉
radius simulation prediction simulation prediction

0.009 5.6421× 10−3 5.6549× 10−3 3.7018× 10−5 3.7029× 10−5

0.0125 7.8638× 10−3 7.8540× 10−3 7.1529× 10−5 7.1429× 10−5

0.02 1.2425× 10−2 1.2566× 10−3 1.8012× 10−4 1.8286× 10−4

Table 1. Comparison of the collision velocity among monosized particles between prediction and
direct numerical simulation in laminar shear flow.

jectories satisfy d(t) 6 Rij . Thus, a particle of a given size can have multiple collisions
within a short period of time. These four different post-collision treatments will, in
principle, result in different collision rates and it is not clear which treatment is the best.

In this work, the ‘throw away’ scheme is implemented. However, an extremely
low particle volume concentration is used. The initial particle volume concentration
is chosen carefully so that the average number of collisions in each turbulence
realization is less than 1. The post-collision treatment thus has little practical effect
on the collision statistics. A large number of turbulence realizations are used to
obtain reliable ensemble average. A subsequent cumulative time averaging smoothes
out statistical noise in the collision rate.

4. Results and discussions
4.1. Comparison with simulation results in a laminar shear flow

In an earlier paper dealing with particle collision a laminar shear flow (Hu & Mei
1998), comparison for the collision kernel, 4

3
ΓR3, based on Smoluchowski’s prediction

and the numerical simulation was presented; excellent agreement was obtained. To
confirm the present analyses in the laminar shear flow, we compare the collision
velocity given by (32) and (33) with that based on the numerical simulations. Inertialess
particles of radius 0.009, 0.0125 and 0.02, respectively, are introduced into a cubic box
with length Lx = 2.0, Ly = 2.0, and Lz = 2.0, with the restriction of 0.1 < yp < 1.9
in which yp is the y-coordinate of the particle position. A uniform shear flow with a
shear rate Γ = 1.0 is imposed and the flow velocity field is given by ν = (ux, uy, uz)=
(Γy, 0, 0). Periodic boundary conditions are employed in the streamwise and spanwise
directions. Particles near y = 0.1 and y = 1.9 have fewer collisions because there are
no particles in regions of y < 0.1 and y > 1.9 in the simulation. A correction due to
this boundary effect (Wang et al. 1998) was needed for the collision rate (Hu & Mei
1998). However, this boundary correction has little effect on the collision velocity since
the decrease in the collision frequency affects both the numerator and denominator in
(25). Three hundred timesteps with a step size ∆t = 0.01 are used to advance particles
and a total of 40 realizations are employed to further increase the statistical accuracy.
Ten thousand particles are used for r = 0.009, 0.0125, while four thousand particles
are used for larger size with r = 0.02. Table 1 shows the comparisons for both 〈−wr〉
and

〈
w2
r

〉
. Since

〈
w2
r

〉
is the second-order moment of wr , excellent agreement for these

two moments indicates that the basis of the present formulation is sound. It is worth
noting that a naive, Eulerian-based estimation of the average collision velocity based
on the incoming particle flux, 4

3
ΓR3ni, and the available collision area, 2πR2, would

lead to an erroneous value of 2
3
(1/π)ΓR instead of 1

10
πΓR for 〈−wr〉.

In a laminar shear flow, wr = −ux cos θ and the collision angle θc between the
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Figure 4. Comparison of the p.d.f.s for the collision angles θc between —–, the theory and •, the
simulation in laminar shear flow.

collision velocity w and the axis connecting the centres of the colliding particle pair,
1
2
π 6 θc 6 π, happens to be equal to θ, as shown in figure 1. In the simulation, θc can

be evaluated easily so that the probability density function (p.d.f.) for θc is readily
obtained. Since (−wr)wr<0 sin θd θdφ is proportional to the probability of the particle
striking the target surface at (θ, φ) with a solid angle dω = dθ dφ, it is readily seen
that

(−wr)dA = −ΓR3 sin2 θ cos θ cosφ dθdφ for (θ, φ) ∈ Ω
= 0 elsewhere, (35)

where Ω is the region defined by ( 1
2
π 6 θ 6 π, − 1

2
π 6 φ 6 1

2
π) and (0 6 θ 6 1

2
π, 1

2
π 6

φ 6 3
2
π) in which wr 6 0. Interpreting sin2 θ cos θ sinφ as proportional to the p.d.f. of

incoming particles striking the target particle near (θ, φ), further integrating over φ
from 0 to 2π, treating 0 6 θ 6 1

2
π as the same as 1

2
π 6 θ 6 π due to the symmetry,

and using appropriate normalization, one obtains the p.d.f. for the collision angle θc

p(θc) = −B sin2 θc cos θc for π 6 θ 6 1
2
π

= 0 for 0 6 θ 6 1
2
π, (36)

where B is a normalizing factor which is 3 for θc in radians and 1
60
π for θc in degrees.

The average angle is 〈θc〉 =
∫ π

1/2π
θc p(θc)dθc = 2.237 rad or 128.17◦. The numerical

simulation gives 〈θc〉 = 128.13◦. Figure 4 compares the p.d.f.s based on the above
prediction and the numerical simulation using ten thousand particles of radius 0.009
over 40 realizations of initial particle positions. Excellent agreement is observed for
the whole region 1

2
π 6 θc 6 π. The present theoretical framework is thus validated in

the laminar shear flow.
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4.2. Collision rate and collision velocity in a Gaussian, isotropic turbulence

For particle collision in isotropic turbulence which is represented using (A 6), the
dimensionless collision kernel,

α∗11 =
α11

R3(ε/ν)1/2
=
〈ex̂H(ζ)〉
(ε/ν)1/2

, (37)

is evaluated using NR = 500 realizations. The dissipation rate ε is based on the
ensemble average of the same NR realizations. In each realization, ex̂H(ζ) and ε/ν
are computed in the flow field with about 654 statistically independent data. It is
found that α∗11 varies slightly with the number of Fourier modes, Nk , used in the
turbulence representation. Furthermore, it weakly depends on the power µ in (A 10)
with which the random wavenumbers are chosen. Figure 5 shows the variation of
α∗11 as Nk increases from 100 to 4096 for µ = 1.2 and 1.4 for η̄0 = 0.05 (Reλ = 53.8).
The result seems to converge after Nk = 2048; α∗11(µ = 1.2) converges to 1.2935
while α∗11(µ = 1.4) converges to 1.2945 with a difference of less than 0.1%. They are
both very close to 1.2944, the value predicted by ST. It is worth commenting that
owing to the rapid decrease of the energy spectrum E(k) in the high k range, not all
wavenumbers that are randomly generated need to be used in (A 10). Those high-
wavenumber modes corresponding to very small amplitudes can be neglected without
compromising the accuracy. Thus, the effective number of random modes is smaller
than the specified Nk . From the simulations, the effective number of the modes for
µ = 1.4 is roughly three times of that for µ = 1.2 for the same Nk . Hence, the fact that
it takes larger values of Nk for µ = 1.2 than for µ = 1.4 to obtain a converged result
is not surprising. It is also interesting to note that, using Nk = 1024 and µ = 1.2,
a higher values of Reλ(= 124.4 using η̄0 = 0.01) gives α∗11 = 1.2899 as opposed to
α∗11 = 1.2912 at Reλ = 53.8. This clearly shows that shape of the energy spectrum
E(k) or the value of Reλ in isotropic turbulence has little effect on α∗11. With Nk = 200
and µ = 1.2, α∗11 = 1.2756 which is only 1.45% less than the converged result. Thus,
in the following numerical simulation for counting the number of particle collisions,
Nk = 200 and µ = 1.2 is used.
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Particle 〈−wr〉 〈−wr〉 〈
w2
r

〉 〈
w2
r

〉
radius (r/η) simulation prediction simulation prediction

0.217 4.5430× 10−2 4.4931× 10−2 2.7356× 10−3 2.7296× 10−3

0.4875 1.0093× 10−1 1.0076× 10−1 1.3405× 10−2 1.3224× 10−2

Table 2. Comparison of the collision velocity among monosized particles between prediction and
direct numerical simulation in a Gaussian, isotropic turbulence.

To validate the present analyses, numerical simulations of particle collision in
isotropic turbulence are performed. The turbulence in the periodic box of length π has
the following characteristics: r.m.s. turbulence velocity u0 = 1.0, integral lengthscale
L11 = 0.594, Taylor micro lengthscale λ = 0.277, Kolmogorov lengthscale η = 0.023,
Kolmogorov timescale τk = (ν/ε)1/2 = 0.073, and Reλ = 40.1. With the modified
Fourier modes in the periodic box, the dimensionless collision kernel based on the
prediction is α∗11 = 1.2711 as opposed to α∗11 = 1.2756 (see the above paragraph)
without the modification of the wavenumbers. Initially, five hundred particles of
radius r = 0.005 (r/η = 0.217) are randomly distributed in the box of volume π3

with a particle volume concentration of 8.44 × 10−6. These inertialess particles are
advanced using local fluid velocity. A total time period of T = 6 (i.e. T/τk = 82.2) is
simulated with timestep ∆t = 0.01. The average number of collisions within the entire
period of the simulation 0 < t < T = 6 in each realization is about 0.4271 < 1. To
obtain reliable statistics, a total of 10 000 realizations is used to generate an estimated
number of collision pairs NC = 4271. Figure 6(a) shows the simulation result for
α∗11 in 0 < t/τk < 82.2 and the predicted value of 1.2711. There is a significant
noise in the numerical simulation data due to the small number of collisions within
each timestep despite the fact that 10 000 realizations have been used. A cumulative
average is applied to reduce the noise. Figure 6(b) shows the cumulative time average
of α∗11 from the simulation. The result of the numerical simulation is less than the
predicted value (1.2711) by about 2.5%. This difference may be caused by the particle
size effect, since the theoretical predictions are expected to be accurate only in the
small size limit, r/η � 1, while the particle size in the numerical simulation is
r/η = 0.217. The effect of finite particle size on the collision rate will be explored
separately. The agreement for α∗11 between the simulation and the prediction is quite
good.

Table 2 shows the results of the prediction and the numerical simulation for the
two moments of particle collision velocity, 〈−wr〉 and

〈
w2
r

〉
, in isotropic turbulence.

The predicted values are based on µ = 1.2 and Nk = 200 in the periodic box with
NR = 400 realizations. The particle sizes are r/η = 0.2175 and 0.4875, respectively.
Satisfactory agreements are obtained. On the other hand, ST gave an expression,
equation (9), for the Eulerian-based average particle radial collision velocity. Using
that expression would give 〈−wr〉/R(ε/ν)1/2 = 0.206. The present prediction for the
turbulence in the periodic domain with NR = 400, after ensemble average, gives a
value of 0.328 for this dimensionless radial collision velocity which agrees rather well
with the numerical simulation shown in table 2. Since the numerical simulation is
based on the tracking of particle trajectories, the probability-based prediction for
〈−wr〉 is consistent with the Lagrangian approach. The Eulerian-based approach for
〈−wr〉 does not take into account the bias of the collision probability toward the high
values of −wr; hence, it gives a lower value for 〈−wr〉.
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Figure 6. (a) Variation of the ensemble averaged particle collision kernel α∗11 from direct numerical
simulation in isotropic turbulence. (b) Cumulative time average of α∗11.

4.3. Collision in a rapidly sheared homogeneous turbulence

The statistics of the turbulence, such as four non-zero components of the Reynolds
stress tensor, generated using RDT and the random Fourier modes were first checked
against the analytical values at short times (Γt� 1) given by RDT (Townsend 1976,
p. 84) and the numerical results of Lee, Kim & Moin (1990) for a finite period of time
to ensure the correct implementations. Interested readers can find relevant information
on the structure of rapidly sheared turbulence in the works by Townsend (1976) and
Lee et al. (1990). It was found through simulation that the development of the sheared
turbulence with time does not depend on the Reynolds number, Reλ, of the initial
state or the energy spectrum at t = 0. The turbulence part of the flow in the RDT
is determined by the total shear S = Γt. The complete flow field, sheared turbulence
plus the mean shear flow, thus depend on two parameters: Γ and S = Γt. Since the
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Figure 7. (a) Normalized particle collision rate in highly sheared homogeneous turbulence without
contribution from the mean shear rate. (b) Collision rate in a rapidly sheared homogeneous
turbulence. ε0 denotes the dissipation rate of the isotropic state at t = 0.

collision rate depends on the spatial structure of the turbulence while the turbulence
structure becomes increasingly anisotropic as the total shear S increases, finding an
appropriate representation of the collision rate in the homogeneous turbulent shear
flow is not trivial. In this part of the investigation, equations (22), (24), and (27)–(31)
are used to compute the collision rate and collision velocity.

To develop a better understanding of the dependence of the collision rate on the
turbulent flow, it is instructive to first examine the collision rate due to the sheared
turbulence alone without the contribution from the mean shear Γ ; this part of the
collision kernel will be denoted as ᾱ11. Another word, ᾱ11 is evaluated using the flow
field given by (A 18) but without the last deterministic term Γx2δi1. Following the
definition for α∗11 in the isotropic turbulence case, we use (ε/ν)1/2, which increases
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rapidly with S , as the turbulence characteristic shear rate to normalize ᾱ11,

ᾱ∗11 =
ᾱ11

R3(ε/ν)1/2
(without contribution from mean shear Γ ). (38)

It is easily seen that ᾱ∗11 depends only on the total shear S = Γt. Figure 7(a) shows
the variation of ᾱ∗11 on S . In the high S limit, the numerical results suggest that ᾱ∗11

approach a constant of 1.1791 in the form of

ᾱ∗11 ∼ 1.1791 + 0.8078/S for S > 10. (39)

In the range of 06 S < 100 turbulence goes from an isotropic state to a strongly
anisotropic state. The turbulence intensity becomes dominated by the longitudinal
component in the x1-direction. Based on RDT prediction which neglects the nonlinear
interaction among different scales, the longitudinal component of the turbulence
makes up 92.7% of the total kinetic energy at S = Γt = 20. The anisotropy invariant
IIb reaches a value of −0.25 at S = 20. At such large values of total shear, S , the
RDT results may become a little inaccurate in comparison with the result of the DNS
of the Navier–Stokes equations. However, for the present work, since the RDT-based
turbulence is strongly anisotropic, it serves our purpose to evaluate the effect of such
anisotropy in the turbulence structure on the particle collision rate. When the collision
kernel is normalized using (ε/ν)1/2, the maximum difference in ᾱ∗11 is only about 15%
at the extreme limit of S → ∞. If the isotropic result is used, ᾱ∗11 ∼ 1.2944, only a
maximum error of 10% will result from the limiting value of ᾱ∗11 at very large total
shear. This encouraging result will be used to develop an approximation for ᾱ∗11 in
the presence of strong mean shear.

Now consideration is given to the particle collision kernel with contribution from
both the turbulence part and the mean flow shear part as the flow field is given
by the entire right-hand side of (A 18). Figure 7(b) shows α∗11 as a function of the
ratio of the mean shear rate to the turbulence characteristic shear rate, Γ/(ε/ν)1/2,
for a range of shear rates. For a given Γ , (ε/ν)1/2 increases as t or S increases
so that the abscissa mainly reflects the effect of t or S . To see the effect of mean
flow shear rate, Γ is made dimensionless by the initial isotropic state turbulence
characteristic shear rate (ε0/ν)

1/2. Four values of Γ/(ε0/ν)
1/2 are used: 0.87, 2.18,

4.36, and 8.72; they correspond to the solid symbols in figure 7(b). The open
symbols specifically correspond to the case when S = 0 (or t = 0) so that the
turbulence is still isotropic. The dimensionless values of α∗11 seem to collapse rea-
sonably well. At large values of Γ/(ε/ν)1/2, the curve becomes linear as the colli-
sion rate is increasingly dominated by the mean shear so that α11 scales linearly
with Γ as Smoluchowski’s theory predicts. A small degree of scattering exists for
Γ/(ε/ν)1/2 < 2. This is caused by the 15% maximum variation in ᾱ∗11 over the
whole range of S , as demonstrated in figure 7(a). There are two possibilities for
Γ/(ε/ν)1/2 � 1 : (i) both Γ and S = Γt are very small, even comparing with
(ε0/ν)

1/2 of the initial isotropic turbulence; (ii) Γ is finite but S = Γt is large so
that (ε/ν)1/2 becomes large compared with (ε0/ν)

1/2. In the first case, the turbu-
lence is closer to the isotropic state so that α∗11 ∼ 1.2944. In the second case, the
turbulence is highly anisotropic and ᾱ∗11 → 1.1791 for very large values of S . No
attempt is made to correlate ᾱ∗11 with the total shear S since S is not relevant in
practical applications such as in turbulent pipe flow. Using α∗11 = 1.2944 in the
isotropic state to represent the turbulence part of the collision kernel, a simple in-
terpolation is proposed to represent the effect of mean shear and turbulence on the
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Figure 8. Collision velocity in a rapidly sheared homogeneous turbulence.
ε0 denotes the dissipation rate of the isotropic state at t = 0.

collision rate,

α∗11 ≈ α11

R3(ε/ν)1/2
=

{
1.29442.2 +

[
1.3333Γ

(ε/ν)1/2

]2.2}1/2.2

. (40)

This interpolation is represented by the dashed line in figure 7(b). A satisfactory
agreement can be observed. It is also worth commenting that when Γ is normalized
using the eddy turn over time, 3u2

0/ε0, of the initial isotropic turbulence, the shear-rate
parameter

Γ ∗ = Γ3u2
0/ε0 (41)

corresponds to Γ ∗ = 36.98 and 92.45 for Γ/(ε0/ν)
1/2 = 0.87 and 2.18. In a low-

Reynolds-number turbulent channel flow, the maximum value of Γ ∗ is around
35 at a location of 10 wall units away from the wall (Kim, Moin & Mosers
1987). Hence, the parameters used in figure 7(b) are relevant to practical sit-
uations. Although a 10% error exists for α∗11 given by (40), the advantage of
this simple approximation is that the dependence on the total shear S = Γt is
eliminated and α∗11 depends only on the scalar quantity Γ (ν/ε)1/2 that captures
both the effects of spatial structure of the turbulence and the mean flow shear
rate.

Figure 8 shows the radial collision velocity, 〈−wr〉, as a function of Γ/(ε/ν)1/2, for
different values of Γ/(ε0/ν)

1/2. Similarly, the data seem to collapse approximately into
one curve in the range studied. The following interpolation fits the radial collision
velocity well,

〈−wr〉
R(ε/ν)1/2

≈
{

0.32451.7 +

[
1

10
π

Γ

(ε/ν)1/2

]1.7}1/1.7

. (42)

For the r.m.s. radial collision velocity,
〈
w2
r

〉
, the behaviour is very similar to that

of 〈−wr〉. While the data is not shown here for brevity, the following interpolation,
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which fits the data quite well, is provided,〈
w2
r

〉1/2

R(ε/ν)1/2
=

{
0.36811.7 +

[
0.3381Γ

(ε/ν)1/2

]1.7}1/1.7

. (43)

The application of the above expressions to turbulent channel flow, which is different
from the homogeneous, rapidly sheared turbulence, is yet to be tested. However, since
the rapidly sheared turbulence at large total shear S considered in this work is already
drastically different from the isotropic turbulence, there are reasons to expect a similar
dependence of α11, 〈−wr〉, and

〈
w2
r

〉
on Γ and (ε/ν)1/2 in a turbulent channel flow

which is of significant industrial importance.
Since the present theory is developed for particles with zero inertia, the effect of

preferential concentration or the microscopic particle concentration non-uniformity
cannot be included in this work. Additional efforts are required to include the effect
of the particle inertia on the collision rate in the presence of mean shear.

5. Summary and conclusion
A theoretical framework has been developed to evaluate the collision rate and

collision velocity of small particles in general turbulent flows. The present approach
differs significantly from that of Saffman & Turner (1956) in that the ensemble
average is taken after the collision rate for a given flow realization is calculated. This
eliminates the assumption of isotropy, as needed in Saffman & Turner, and allows
for the evaluation of the collision rate in general turbulent flows. Using the present
theory, the classical results for the collision rate by Smoluchowski (1917) for laminar
shear flow and by Saffman & Turner (1956) for isotropic turbulence are recovered.
The predicted collision velocity in both laminar shear flow and isotropic turbulence
agrees well with the numerical simulation result for particle collisions.

The present theory is subsequently used to evaluate the collision rate and collision
velocity of small particles in the rapidly sheared homogeneous turbulence. Although
the turbulence structure depends strongly on the total strain rate S and is highly
anisotropic and the collision rate depends on the rate-of-strain tensor in general, it
is found that the effect of the turbulence structure on the collision rate and collision
velocity can be captured by using a characteristic turbulent shear rate (ε/ν)1/2. The
combined effects of the mean shear and the sheared turbulence on the collision rate
and the collision velocity can be reliably evaluated using simple interpolations for
arbitrary mean flow shear rate and turbulence mean shear rate.

The authors acknowledge the financial support of the Engineering Research Center
(ERC) for Particle Science and Technology at the University of Florida, the National
Science Foundation (EEC-9402989), industrial partners of the ERC, and the ALCOA
Foundation Award.

Appendix. Representation of isotropic turbulence and rapidly sheared
turbulence

A.1. Isotropic turbulence

The following model for the energy spectrum developed in Mei & Adrian (1995) is
assumed for turbulence,

E(k) = 3
2
u2

0ψ
k4

k5
0

1

[1 + (k/k0)2]17/6
exp (−η2

0k
2), (A 1)
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where u0 is the r.m.s. turbulent velocity, k0 is a typical wavenumber and the dimen-
sionless parameter η̄0 = η0k0 is related to the turbulent Reynolds number Reλ. Large
Reλ corresponds to small η̄0 and vice versa. The normalizing coefficient ψ in E(k) is
determined from (A 1) by satisfying the total energy requirement,

ψ−1 =

∫ ∞
0

k̄4

(1 + k̄2)17/6
exp (−η̄2

0 k̄
2)dk̄. (A 2)

For small η̄0, E(k) ∼ k4 when k̄ = k/k0 � 1 and E(k) ∼ k−5/3, which is the scaling
law in the inertial subrange, when 1 � k̄ � 1/η̄0. For large η̄0, the above energy
spectrum recovers that of Kraichnan (1970). The relationship between the Eulerian
integral length L11k0 and η̄0, (or Reλ) is given in Mei & Adrian (1994).

A turbulent eddy loses its identity as it is convected and dissipated; this behaviour
is described by the eddy self-decay function D(τ) which has an integral timescale T0.
The Fourier transformation of D(τ) gives the power spectrum D̃(ω). A composite
form for the power spectrum D̃(ω) was constructed in Mei & Adrian (1995) as

D̃(ω) = Ã
exp (−η2

1ω
2)

1 + (Tω)2
, (A 3)

where η1 is intended for the viscous dissipation timescale if the turbulent Reynolds
number is high, and T is close to T0 if η1/T � 1. The coefficient Ã is determined as

Ã =
T

π

exp (−η2
1/T

2)

1− erf (η1/T )
(A 4)

by satisfying
∫ ∞
−∞ D̃(ω)dω = 1. The integral timescale T0 is related to T as T0 =

πD̃(0) = πÃ.
The relationship between L11 and T0 is not known in general; it can take the

following form

T0 = cE(Reλ)L11/u0, (A 5)

where cE(Reλ) was determined approximately in Mei & Adrian (1995) based on the
experimental data of Sato & Yamamoto (1987) for the fluid dispersion and the value
of high-Reynolds-number turbulent Prandtl number.

Using random Fourier modes representation, an isotropic, Gaussian, pseudoturbu-
lence,

ui(x, t) =

Nk∑
m=1

[b(m)
i cos (k(m) · x+ ω(m)t)

+ c
(m)
i sin (k(m) · x+ ω(m)t)] (i = 1, 2, 3), (A 6)

is constructed to simulate the fluid turbulence with a specified energy spectrum. In
the above, Nk is the number of the random Fourier modes in one flow realization,
and k(m) and ω(m) are the wavenumber and frequency of the mth mode. The random
coefficients b(m)

i and c(m)
i are chosen as follows,

b
(m)
i = b̃

(m)
j (δij − k(m)

i k
(m)
j /k(m)2

)f(k(m), ω(m)), (A 7)

where b̃(m)
j follows a normal distribution with

〈b̃(m)
j 〉 = 0, 〈b̃(m)

i b̃
(m)
j 〉 = δij . (A 8)
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The factor (δij − k(m)
i k

(m)
j /k(m)2

) in (A 8) ensures the incompressibility ∇ · u = 0 for
every Fourier mode. The scale factor f(k, ω) depends on the energy spectrum and the
probability density functions (p.d.f.), p1(k) and p2(ω), of k and ω,

f2(k, ω) =
E(k)D̃(ω)

4πNk2p1(k)p2(ω)
. (A 9)

Since E(k) decays as k−5/3 in the inertia subrange, a Gaussian distribution for k would
lead to a very slow statistical convergence for ui(x, t). To achieve convergence of the
statistics involving the derivatives such as ∂ui/∂xj , the following algebraic p.d.f.

p1i(ki) = 1
2
(µ− 1)(1 + |k1i|)−µ for i = 1, 2, 3, (A 10)

is used to sample ki for k0 = 1. The sensitivity of the collision rate αij to (µ,Nk) is
investigated to ensure the statistical convergence at high Reλ, and independence of
the results to these parameters. The frequency ω(m) is generated with the following
p.d.f.

p2(ω) =
1

π

1

1 + (ω/u0k0)2
. (A 11)

The scale factor is finally set to be

f2(k, ω) =
E(k)D̃(w)

4πNkk2p11(k1)p12(k2)p13(k3)p2(ω)
. (A 12)

It is noted that in the present theoretical formulation, the collision rate is dictated by
the spatial structure and the eddy self-decay has no effect on the collision rate. In the
numerical simulation of particle collision in isotropic turbulence, the eddy self-decay
can be incorporated. Hence, the dependence of b(m)

i and c(m)
i on ω is still included.

A.2. Rapidly sheared homogeneous turbulence

For an initially isotropic turbulence under rapid shear, Γ = ∂U/∂y, the variation of

b
(m)
i with time was given in Townsend (1976) based on rapid distortion theory (RDT).

Hunt & Carruthers (1990) gave an overview on the use of RDT for representing
various types of homogeneous turbulence. Denoting the total shear S as

S = Γt (A 13)

the new wavenumber vector χ(m) after the shearing is given by

χ
(m)
1 = k

(m)
1 ,

χ
(m)
2 = k

(m)
2 − Sk(m)

1 ,

χ
(m)
3 = k

(m)
3 ,

 (A 14)

where k(m) is the wavenumber vector of the mth mode before the mean shear is
applied. The amplitude of each Fourier mode becomes

b
(m)
1 (S) = b

(m)
1 (0) + a1b

(m)
2 (0),

b
(m)
2 (S) = a2b

(m)
2 (0),

b
(m)
3 (S) = b

(m)
3 (0) + a3b

(m)
2 (0),

 (A 15)

where b
(m)
i (0) is the corresponding amplitude of the mth mode before the rapid

distortion. Dropping the superscript m for convenience, the coefficient ai for each
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mode m is given as

a1 =
Sk2

1

k2
1 + k2

3

k2 − 2k2
2 + Sk1k2

χ2
− k2k2

3

(k2
1 + k2

3)3/2k1

×
[

tan−1

(
k√

k2
1 + k2

3

)
− tan−1

(
k2 − Sk1√
k2

1 + k2
3

)]
,

a2 = k2/χ2,

a3 =
Sk1k3

k2
1 + k2

3

k2 − 2k2
2 + Sk1k2

χ2
− k2k3

(k2
1 + k2

3)3/2

×
[

tan−1

(
k2√
k2

1 + k2
3

)
− tan−1

(
k2 − Sk1√
k2

1 + k2
3

)]
,



(A 16)

where k =
√
k2

1 + k2
2 + k2

3 and χ =
√
χ2

1 + χ2
2 + χ2

3. The coefficient c(m)
i is similarly

obtained. It is clear from the above that the amplitude of each mode is determined
entirely by the total shear S = Γt. The dissipation rate ε(S) can be evaluated as

ε(S)/ν = 1
2

〈
Nk∑
m=1

{
χ(m)2

3∑
i=1

[b(m)2

i (S) + c
(m)2

i (S)]

}〉
. (A 17)

Finally, the total velocity field is

ui(x, t) =

Nk∑
m=1

[b(m)
i (S) cos (χ(m)·x+ ω(m)t) + c

(m)
i (S) sin (χ(m)·x+ ω(m)t)]

+Γx2 δi1 (i = 1, 2, 3). (A 18)

Since the shear rate is high, the term ω(m)t in the above acts merely as a random
phase.
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